By Topic

A comparative study of fast dense stereo vision algorithms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Sunyoto, H. ; Instrum. Dept., TNO TPD, Delft, Netherlands ; van der Mark, W. ; Gavrila, D.M.

With recent hardware advances, real-time dense stereo vision becomes increasingly feasible for general-purpose processors. This has important benefits for the intelligent vehicles domain, alleviating object segmentation problems when sensing complex, cluttered traffic scenes. In this paper, we presents a framework of real-time dense stereo vision algorithms that all based on a SIMD architecture. We distinguish different methodical components and examine their performance-speed trade-off. We furthermore compare the resulting algorithmic variations with an existing public source dynamic programming implementation from OpenCV and with the stereo methods discussed in Sharstein and Szeliski's survey. Unlike the previous, we evaluate all stereo vision algorithms using realistically looking simulated data as well as real data, from complex urban traffic scenes.

Published in:

Intelligent Vehicles Symposium, 2004 IEEE

Date of Conference:

14-17 June 2004