Cart (Loading....) | Create Account
Close category search window
 

Enhancing digital libraries with TechLens

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Torres, R. ; Inst. de Informatica, Univ. Fed. do Rio Grande do Sul, Porto Alegre, Brazil ; McNee, S.M. ; Abel, M. ; Konstan, J.A.
more authors

The number of research papers available is growing at a staggering rate. Researchers need tools to help them find the papers they should read among all the papers published each year. In this paper, we present and experiment with hybrid recommender algorithms that combine collaborative filtering and content-based filtering to recommend research papers to users. Our hybrid algorithms combine the strengths of each filtering approach to address their individual weaknesses. We evaluated our algorithms through offline experiments on a database of 102,000 research papers, and through an online experiment with 110 users. For both experiments we used a dataset created from the CiteSeer repository of computer science research papers. We developed separate English and Portuguese versions of the interface and specifically recruited American and Brazilian users to test for cross-cultural effects. Our results show that users value paper recommendations, that the hybrid algorithms can be successfully combined, that different algorithms are more suitable for recommending different kinds of papers, and that users with different levels of experience perceive recommendations differently. These results can be applied to develop recommender systems for other types of digital libraries.

Published in:

Digital Libraries, 2004. Proceedings of the 2004 Joint ACM/IEEE Conference on

Date of Conference:

7-11 June 2004

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.