Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Intelligent motion control for linear piezoelectric ceramic motor drive

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Rong-Jong Wai ; Dept. of Electr. Eng., Yuan Ze Univ., Chung Li, Taiwan ; Jeng-Dao Lee

Since the dynamic characteristics of a linear piezoelectric ceramic motor (LPCM) are highly nonlinear and time varying, it is difficult to design a suitable motor drive and position controller that realizes accurate position control at all time. This study investigates a double-inductance double-capacitance (LLCC) resonant driving circuit and a sliding-mode fuzzy-neural-network control (SMFNNC) system for the motion control of an LPCM. First, the motor structure and LLCC driving circuit of an LPCM are introduced. The LLCC resonant inverter is designed to operate at an optimal switching frequency such that the output voltage will not be influenced by the variation of quality factor. Moreover, a SMFNNC system is designed to achieve favorable tracking performance without precise dynamic models being controlled. All adaptive learning algorithms in the SMFNNC system are derived in the sense of Lyapunov stability analysis, so that system-tracking stability can be guaranteed in the closed-loop system. The effectiveness of the proposed driving circuit and control system is verified by experimental results.

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:34 ,  Issue: 5 )