By Topic

Robust adaptive-scale parametric model estimation for computer vision

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
H. Wang ; Dept. of Electr. & Comput. Syst. Eng., Monash Univ., Clayton, Vic., Australia ; D. Suter

Robust model fitting essentially requires the application of two estimators. The first is an estimator for the values of the model parameters. The second is an estimator for the scale of the noise in the (inlier) data. Indeed, we propose two novel robust techniques: the two-step scale estimator (TSSE) and the adaptive scale sample consensus (ASSC) estimator. TSSE applies nonparametric density estimation and density gradient estimation techniques, to robustly estimate the scale of the inliers. The ASSC estimator combines random sample consensus (RANSAC) and TSSE, using a modified objective function that depends upon both the number of inliers and the corresponding scale. ASSC is very robust to discontinuous signals and data with multiple structures, being able to tolerate more than 80 percent outliers. The main advantage of ASSC over RANSAC is that prior knowledge about the scale of inliers is not needed. ASSC can simultaneously estimate the parameters of a model and the scale of the inliers belonging to that model. Experiments on synthetic data show that ASSC has better robustness to heavily corrupted data than least median squares (LMedS), residual consensus (RESC), and adaptive least Kth order squares (ALKS). We also apply ASSC to two fundamental computer vision tasks: range image segmentation and robust fundamental matrix estimation. Experiments show very promising results.

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:26 ,  Issue: 11 )