Cart (Loading....) | Create Account
Close category search window
 

A closed-form solution for a two-view self-calibration problem under fixation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ueshiba, T. ; Nat. Inst. of Adv. Ind. Sci. & Technol., Japan ; Tomita, F.

It is well known that the epipolar geometry between two uncalibrated perspective views is completely encapsulated in the fundamental matrix. Since the fundamental matrix has seven degrees of freedom (DOF), self-calibration is possible if at most seven of the intrinsic or extrinsic camera parameters are unknown by extracting them from the fundamental matrix. This work presents a linear algorithm for self-calibrating a perspective camera which undergoes fixation, that is, a special motion in which the camera's optical axis is confined in a plane. Since this fixation has four degrees of freedom, which is one smaller than that of general motion, we can extract at most three intrinsic parameters from the fundamental matrix. We here assume that the focal length (1 DOF) and the principal point (2 DOF) are unknown but fixed for two views. It will be shown that these three parameters are obtained from the fundamental matrix in an analytical fashion and a closed-form solution is derived. We also characterize all the degenerate motions under which there exists an infinite set of solutions.

Published in:

3D Data Processing, Visualization and Transmission, 2004. 3DPVT 2004. Proceedings. 2nd International Symposium on

Date of Conference:

6-9 Sept. 2004

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.