By Topic

Axial strain calculation using a low-pass digital differentiator in ultrasound elastography

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Jianwen Luo ; Dept. of Biomed. Eng., Tsinghua Univ., Beijing, China ; Jing Bai ; He, P. ; Kui Ying

In ultrasound elastography, tissue axial strains are calculated from the gradient of the estimated axial displacements. However, the common differentiation operation amplifies the noises in the displacement estimation, especially at high frequencies. In this paper, a low-pass digital differentiator (LPDD) is proposed to calculate the axial strain from the estimated tissue displacement. Several LPDDs that have been well developed in the field of digital signal processing are presented. The corresponding performances are compared qualitatively and quantitatively in computer simulations and in preliminary phantom and in vitro experiments. The results are consistent with the theoretical analysis of the LPDDs.

Published in:

Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on  (Volume:51 ,  Issue: 9 )