By Topic

Rapid spline-based kernel density estimation for Bayesian networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Gurwicz, Y. ; Dept. of Electr. & Comput. Eng., Ben-Gurion Univ., Beer-Sheva, Israel ; Lerner, B.

The likelihood for patterns of continuous attributes for the naive Bayesian classifier (NBC) may be approximated by kernel density estimation (KDE), letting every pattern influence the shape of the probability density thus leading to accurate estimation. KDE suffers from computational cost making it unpractical in many real-world applications. We smooth the density using a spline thus requiring only very few coefficients for the estimation rather than the whole training set, allowing rapid implementation of the NBC without sacrificing classifier accuracy. Experiments conducted over several real-world databases reveal acceleration, sometimes in several orders of magnitude, in favor of the spline approximation making the application of KDE to the NBC practical.

Published in:

Pattern Recognition, 2004. ICPR 2004. Proceedings of the 17th International Conference on  (Volume:3 )

Date of Conference:

23-26 Aug. 2004