By Topic

Principal component analysis for online handwritten character recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Deepu, V. ; Hewlett-Packard Labs., Bangalore, India ; Madhvanath, S. ; Ramakrishnan, A.G.

In this paper, principal component analysis (PCA) is applied to the problem of online handwritten character recognition in the Tamil script. The input is a temporally ordered sequence of (x,y) pen coordinates corresponding to an isolated character obtained from a digitizer. The input is converted into a feature vector of constant dimensions following smoothing and normalization. PCA is used to find the basis vectors of each class subspace and the orthogonal distance to the subspaces used for classification. Pre-clustering of the training data and modification of distance measure are explored to overcome some common problems in the traditional subspace method, in empirical evaluation, these PCA -based classification schemes are found to compare favorably with nearest neighbour classification.

Published in:

Pattern Recognition, 2004. ICPR 2004. Proceedings of the 17th International Conference on  (Volume:2 )

Date of Conference:

23-26 Aug. 2004