By Topic

W-Boost and its application to Web image classification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Jingrui He ; Dept. of Autom., Tsinghua Univ., Beijing, China ; Mingjing Li ; Hong-Jiang Zhang ; Changshui Zhang

When training data is not sufficient, boosting algorithms tend to overfit as more weak learners are combined to form a strong classifier. In this paper, we propose a new variant of RealBoost, called W-Boost, which is based on a novel weight update scheme and uses changeable bin number to estimate marginal distributions in weak learner design. This new boosting procedure results in both fast convergence rate and small generalization error. Experimental results on synthetic data and Web image classification demonstrate the effectiveness of our approach.

Published in:

Pattern Recognition, 2004. ICPR 2004. Proceedings of the 17th International Conference on  (Volume:1 )

Date of Conference:

23-26 Aug. 2004