By Topic

Galilean-diagonalized spatio-temporal interest operators

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Lindeberg, T. ; Dept. of Numerical Anal. & Comput. Sci., Comput. Vision & Active Perception Lab., Stockholm, Sweden ; Akbarzadeh, A. ; Laptev, I.

This paper presents a set of image operators for detecting regions in space-time where interesting events occur. To define such regions of interest, we compute a spatio-temporal second-moment matrix from a spatio-temporal scale-space representation, and diagonalize this matrix locally, using a local Galilean transformation in space-time, optionally combined with a spatial rotation, so as to make the Galilean invariant degrees of freedom explicit. From the Galilean-diagonalized descriptor so obtained, we then formulate different types of space-time interest operators, and illustrate their properties on different types of image sequences.

Published in:

Pattern Recognition, 2004. ICPR 2004. Proceedings of the 17th International Conference on  (Volume:1 )

Date of Conference:

23-26 Aug. 2004