By Topic

Global localization and relative pose estimation based on scale-invariant features

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kosecka, J. ; Dept. of Comput. Sci., George Mason Univ., Fairfax, VA, USA ; Xiaolong Yang

The capability of maintaining the pose of the mobile robot is central for basic navigation and map building tasks. In This work we describe a vision-based hybrid localization scheme based on scale-invariant keypoints. In the first stage the topological localization is accomplished by matching the keypoints detected in the current view with the database of model views. Once the best match has been found, the relative pose between the model view and the current image is recovered. We demonstrate the efficiency of the location recognition approach and present a closed form solution to the relative pose recovery for the case of planar motion and unknown focal length of the camera. The approach is demonstrated on several examples of indoor environments.

Published in:

Pattern Recognition, 2004. ICPR 2004. Proceedings of the 17th International Conference on  (Volume:4 )

Date of Conference:

23-26 Aug. 2004