By Topic

Visual pattern recognition in the years ahead

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
G. Nagy ; DocLab, Rensselaer Polytech. Inst., Troy, NY, USA

Conventional classification algorithms have already reached a plateau at the trade-off imposed by the bias due to the structure of the classifier and the variance due to the limited size of the training set. The latter may be alleviated by exploiting known constraints, including class and style priors, language models, statistical correlations between spatially proximate patterns, statistical dependence due to isogeny (common source) of patterns, and even information-theoretic properties of the representations that have evolved for symbolic patterns intended for communication. Another development that may lead to new applications of pattern recognition is more effective human intervention. The interplay of human and machine abilities requires models that are both human and computer accessible.

Published in:

Pattern Recognition, 2004. ICPR 2004. Proceedings of the 17th International Conference on  (Volume:4 )

Date of Conference:

23-26 Aug. 2004