Cart (Loading....) | Create Account
Close category search window
 

Power-aware scheduling for AND/OR graphs in real-time systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Zhu, D. ; Dept. of Comput. Sci., Pittsburgh Univ., PA, USA ; Mosse, D. ; Melhem, R.

Power aware computing has become popular, recently and many techniques have been proposed to manage processor energy consumption for traditional real-time applications. In this paper, we are concerned mainly with the AND/OR model of real-time applications that have different execution paths consisting of different tasks. The contribution of this paper is twofold. First, we propose a greedy slack stealing algorithm to deal with applications represented by AND/OR graphs and prove its correctness in terms of meeting the timing constraints. Then, using statistical information about the applications, we propose a few variations of speculative scheduling algorithms that intend to save energy by reducing the number of speed changes (and, thus, the overhead) while ensuring that the application meets its timing constraints. Some practical issues are also considered, such as shared memory access contention and idle energy consumption. The performance of the algorithms is analyzed with respect to processor energy savings. The results surprisingly show that the greedy slack stealing scheme is better than some speculative schemes and that the greedy scheme is good enough when a reasonable minimal speed exists in the system or when there are only a few (four to six) voltage/speed levels.

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:15 ,  Issue: 9 )

Date of Publication:

Sept. 2004

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.