By Topic

Visual data mining in large geospatial point sets

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Keim, D.A. ; Constance Univ., Konstanz, Germany ; Panse, C. ; Sips, M. ; North, S.C.

Visual data-mining techniques have proven valuable in exploratory data analysis, and they have strong potential in the exploration of large databases. Detecting interesting local patterns in large data sets is a key research challenge. Particularly challenging today is finding and deploying efficient and scalable visualization strategies for exploring large geospatial data sets. One way is to share ideas from the statistics and machine-learning disciplines with ideas and methods from the information and geo-visualization disciplines. PixelMaps in the Waldo system demonstrates how data mining can be successfully integrated with interactive visualization. The increasing scale and complexity of data analysis problems require tighter integration of interactive geospatial data visualization with statistical data-mining algorithms.

Published in:

Computer Graphics and Applications, IEEE  (Volume:24 ,  Issue: 5 )