By Topic

Algebraic optimization of data delivery patterns in mobile sensor networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Zadorozhny, V. ; Dept. of Info Sci. & Telecom, Pittsburgh Univ., PA, USA ; Chrysanthis, P.K. ; Labrinidis, A.

Database-like query processing over a network of sensors has become an attractive paradigm for building sensor applications. A sensor query is characterized by data streams among participating sensor nodes with possible in-node data filtering or aggregation, and can be described as a tree-like data delivery pattern. The data delivery pattern can also be considered as a query execution plan, or query routing tree. We propose an algebraic optimization of the query routing tree construction and reconfiguration. In particular, we aim at generating query trees that maximize collision-free concurrent data transmissions hence reducing energy and time wastes due to retransmissions. Towards this, we introduce a data transmission algebra (DTA) and apply it for efficient generation of such query trees.

Published in:

Database and Expert Systems Applications, 2004. Proceedings. 15th International Workshop on

Date of Conference:

30 Aug.-3 Sept. 2004