By Topic

Finite precision analysis of support vector machine classification in logarithmic number systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Khan, F.M. ; Dept. of Comput. Sci. Eng., Lehigh Univ., Bethlehem, PA, USA ; Arnold, M.G. ; Pottenger, W.M.

In this paper we present an analysis of the minimal hardware precision required to implement support vector machine (SVM) classification within a logarithmic number system architecture. Support vector machines are fast emerging as a powerful machine-learning tool for pattern recognition, decision-making and classification. Logarithmic number systems (LNS) utilize the property of logarithmic compression for numerical operations. Within the logarithmic domain, multiplication and division can be treated simply as addition or subtraction. Hardware computation of these operations is significantly faster with reduced complexity. Leveraging the inherent properties of LNS, we are able to achieve significant savings over double-precision floating point in an implementation of a SVM classification algorithm.

Published in:

Digital System Design, 2004. DSD 2004. Euromicro Symposium on

Date of Conference:

31 Aug.-3 Sept. 2004