By Topic

A novel signed higher-radix full-adder algorithm and implementation with current-mode multi-valued logic circuits

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Temel, T. ; Sch. of Informatics, Edinburgh Univ., UK ; Morgul, A. ; Aydin, N.

A higher-radix algebra for full-addition of two numbers is described and realised by combining multivalued logic min, max, literal and cyclic operators in terms disjoint terms. The latter operator is designed by using a current-mode threshold circuit while the other operator is realised by only voltage-mode switching circuits. The threshold circuit employed allows for much higher radices compared to architectures employing voltage-mode binary logic switching circuits as well as better mismatch properties compared to previous threshold circuits. Due to disjoint terms involved, multi-valued logic min and max operators can be replaced with ordinary transmission operation and addition, respectively. Resultant a single-digit, radix-8 full-adder and its 3-bit counterpart voltage-mode circuits are realised and compared. The algorithm is also exploited for a multi-digit case and its HSPICE simulation results are presented.

Published in:

Digital System Design, 2004. DSD 2004. Euromicro Symposium on

Date of Conference:

31 Aug.-3 Sept. 2004