By Topic

Analysis of charge-pump phase-locked loops

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
P. K. Hanumolu ; Sch. of Electr. Eng. & Comput. Sci., Oregon State Univ., Corvallis, OR, USA ; M. Brownlee ; K. Mayaram ; Un-Ku Moon

In this paper, we present an exact analysis for third-order charge-pump phase-locked loops using state equations. Both the large-signal lock acquisition process and the small-signal linear tracking behavior are described using this analysis. The nonlinear state equations are linearized for the small-signal condition and the z-domain noise transfer functions are derived. A comparison to some of the existing analysis methods such as the impulse-invariant transformation and s-domain analysis is provided. The effect of the loop parameters and the reference frequency on the loop phase margin and stability is analyzed. The analysis is verified using behavioral simulations in MATLAB and SPECTRE.

Published in:

IEEE Transactions on Circuits and Systems I: Regular Papers  (Volume:51 ,  Issue: 9 )