By Topic

Distributed control design for systems interconnected over an arbitrary graph

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
C. Langbort ; Dept. of Theor. & Appl. Mech., Cornell Univ., Ithaca, NY, USA ; R. S. Chandra ; R. D'Andrea

We consider the problem of synthesizing a distributed dynamic output feedback controller achieving H performance for a system composed of different interconnected sub-units, when the topology of the underlying graph is arbitrary. First, using tools inspired by dissipativity theory, we derive sufficient conditions in the form of finite-dimensional linear matrix inequalities when the interconnections are assumed to be ideal. These inequalities are coupled in a way that reflects the spatial structure of the problem and can be exploited to design distributed synthesis algorithms. We then investigate the case of lossy interconnection links and derive similar results for systems whose interconnection relations can be captured by a class of integral quadratic constraints that includes constant delays.

Published in:

IEEE Transactions on Automatic Control  (Volume:49 ,  Issue: 9 )