By Topic

Analysis of eddy-current loss for design of small active magnetic bearings with solid core and rotor

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ha-Yong Kim ; Dept. of Mech. Eng., Korea Adv. Inst. of Sci. & Technol., Daejeon, South Korea ; Chong-Won Lee

As the size of rotors levitated by active magnetic bearings (AMBs) gets smaller, it becomes increasingly difficult to make laminated cores and rotors that have low eddy-current loss, and solid cores and rotors have to be substituted. Thus, accurate modeling of eddy-current loss is important for small-size AMB systems with solid cores and rotor. In this paper, we propose a new eddy-current loss model for AMB systems, based on the eddy-current brake concept. We show that the eddy-current loss in AMBs strongly depends on the arrangement and size of poles. We compare test results for hetero- and homopolar AMBs having nonlaminated cores and rotor to analytical findings based on the eddy-current loss model. The experimental results confirm that the eddy-current loss in small homopolar AMBs with nonlaminated cores and rotor can be greatly reduced by optimizing the arrangement and size of poles.

Published in:

IEEE Transactions on Magnetics  (Volume:40 ,  Issue: 5 )