Cart (Loading....) | Create Account
Close category search window
 

Identification and control of dynamical systems using the self-organizing map

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Barreto, G.A. ; Dept. of Teleinformatics Eng., Fed. Univ. of Ceara, Fortaleza-CE, Brazil ; Araujo, A.F.R.

In this paper, we introduce a general modeling technique, called vector-quantized temporal associative memory (VQTAM), which uses Kohonen's self-organizing map (SOM) as an alternative to multilayer perceptron (MLP) and radial basis function (RBF) neural models for dynamical system identification and control. We demonstrate that the estimation errors decrease as the SOM training proceeds, allowing the VQTAM scheme to be understood as a self-supervised gradient-based error reduction method. The performance of the proposed approach is evaluated on a variety of complex tasks, namely: i) time series prediction; ii) identification of SISO/MIMO systems; and iii) nonlinear predictive control. For all tasks, the simulation results produced by the SOM are as accurate as those produced by the MLP network, and better than those produced by the RBF network. The SOM has also shown to be less sensitive to weight initialization than MLP networks. We conclude the paper by discussing the main properties of the VQTAM and their relationships to other well established methods for dynamical system identification. We also suggest directions for further work.

Published in:

Neural Networks, IEEE Transactions on  (Volume:15 ,  Issue: 5 )

Date of Publication:

Sept. 2004

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.