By Topic

Geometrically uniform codes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Forney, G.D. ; Motorola Codex, Mansfield, MA, USA

A signal space code C is defined as geometrically uniform if, for any two code sequences in C, there exists an isometry that maps one sequence into the other while leaving the code C invariant. Geometrical uniformity, a strong kind of symmetry, implies such properties as a) the distance profiles from code sequences in C to all other code sequences are all the same, and b) all Voronoi regions of code sequences in C have the same shape. It is stronger than Ungerboeck Zehavi-Wolf symmetry or Calderbank-Sloane regularity. Nonetheless, most known good classes of signal space codes are shown to be generalized coset codes, and therefore geometrically uniform, including (a) lattice-type trellis codes based on lattice partitions Λ/Λ' such that ZN/Λ/Λ'/4ZN is a lattice partition chain, and (b) phase-shift-keying (PSK)-type trellis codes based on up to four-way partitions of a 2n-PSK signal set

Published in:

Information Theory, IEEE Transactions on  (Volume:37 ,  Issue: 5 )