By Topic

An ant colony optimization algorithm for the redundancy allocation problem (RAP)

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yun-Chia Liang ; Dept. of Ind. Eng. & Manage., Yuan Ze Univ., Taoyuan, Taiwan ; Smith, A.E.

This paper uses an ant colony meta-heuristic optimization method to solve the redundancy allocation problem (RAP). The RAP is a well known NP-hard problem which has been the subject of much prior work, generally in a restricted form where each subsystem must consist of identical components in parallel to make computations tractable. Meta-heuristic methods overcome this limitation, and offer a practical way to solve large instances of the relaxed RAP where different components can be placed in parallel. The ant colony method has not yet been used in reliability design, yet it is a method that is expressly designed for combinatorial problems with a neighborhood structure, as in the case of the RAP. An ant colony optimization algorithm for the RAP is devised & tested on a well-known suite of problems from the literature. It is shown that the ant colony method performs with little variability over problem instance or random number seed. It is competitive with the best-known heuristics for redundancy allocation.

Published in:

Reliability, IEEE Transactions on  (Volume:53 ,  Issue: 3 )