By Topic

A new methodology for the transient analysis of lossy and dispersive multiconductor transmission lines

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Antonini, G. ; Dipt. di Ingegneria Elettrica, Univ. degli Studi di L''Aquila, Italy

This paper presents a new technique for the transient analysis of multiconductor transmission lines (MTLs). The proposed model is derived from the analytical characterization of half-T ladder networks (HTLNs), which approximate the MTLs. Using closed-form polynomials (named D'Amico-Faccio-Ferri (DFF) and DFFz), poles and residues of the two-port representation of MTLs are extracted analytically, thus leading to a time-domain macromodel, which can be incorporated in a circuit simulator. Furthermore, the knowledge of poles allows one to develop an efficient model order reduction technique by selecting only the dominant poles of the system within a fixed bandwidth. Stability and passivity properties of the proposed model are intrinsically enforced as a consequence of stability and passivity of HTLNs and rational approximation procedure.

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:52 ,  Issue: 9 )