By Topic

Solution of time domain electric field Integral equation using the Laguerre polynomials

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Young-seek Chung ; Dept. of Commun. Eng., Myongji Univ., Kyunggi, South Korea ; Sarkar, T.K. ; Baek Ho Jung ; Salazar-Palma, M.
more authors

In this paper, we propose a numerical method to obtain a solution for the time domain electric field integral equation (TD-EFIE) for arbitrary shaped conducting structures. This method does not utilize the customary marching-on in time (MOT) solution method often used to solve a hyperbolic partial differential equation. Instead we solve the wave equation by expressing the transient behaviors in terms of Laguerre polynomials. By using these causal orthonormal basis functions for the temporal variation, the time derivatives can be handled analytically. In order to solve the wave equation, we introduce two separate testing procedures, a spatial and temporal testing. By introducing first the Galerkin temporal testing procedure, the MOT procedure is replaced by a recursive relation between the different orders of the weighted Laguerre polynomials. The other novelty of this approach is that through the use of the entire domain Laguerre polynomials for the expansion of the temporal variation of the current, the spatial and the temporal variables can be separated and the temporal variables can be integrated out. For convenience, we use the Hertz vector as the unknown variable instead of the electric current density. To verify our method, we compare the results of a TD-EFIE and inverse Fourier transform of a frequency domain EFIE.

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:52 ,  Issue: 9 )