By Topic

Concurrent error detection and fault location in an FFT architecture

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Lombardi, Fabrizio ; Dept. of Comput. Sci., Texas A&M Univ., College Station, TX, USA ; Muzio, Jon C.

A new approach for concurrent error detection in a homogeneous architecture for the computation of the complex N-point fast Fourier transform (FFT) in radix-2 is presented. The proposed approach is based on the relationship between cell computations. It is proved that 100% probability of detection is possible. Overhead issues for hardware and timing are addressed. It is proved that hardware overhead for concurrent error detection is 50% compared to a fault-intolerant complex two-point implementation. A modest time overhead is encountered for error detection and fault location. Error detection can be accommodated online and on a component basis (multiplier or adder/subtractor): full fault location is accomplished by a roving technique. The proposed technique can be efficiently accommodated in a homogeneous layout. A two-phase reconfiguration policy for the proposed architecture is presented. It is proved that switching and routing overhead is modest, while reliability is significantly improved over previous approaches

Published in:

Solid-State Circuits, IEEE Journal of  (Volume:27 ,  Issue: 5 )