By Topic

FEM modeling of temperature distribution of a flip-chip no-flow underfill package during solder reflow process

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Zhuqing Zhang ; Eng. & Packaging Res. Center, Georgia Inst. of Technol., Atlanta, GA, USA ; Sitaraman, S.K. ; Wong, C.P.

Flip chip on organic substrate has relied on underfill to redistribute the thermomechanical stress and to enhance the solder joint reliability. However, the conventional flip-chip underfill process involves multiple process steps and has become the bottleneck of the flip-chip process. The no-flow underfill is invented to simplify the flip-chip underfill process and to reduce the packaging cost. The no-flow underfill process requires the underfill to possess high curing latency to avoid gelation before solder reflow so to ensure the solder interconnect. Therefore, the temperature distribution of a no-flow flip-chip package during the solder reflow process is important for high assembly yield. This paper uses the finite-element method (FEM) to model the temperature distribution of a flip-chip no-flow underfill package during the solder reflow process. The kinetics of underfill curing is established using an autocatalytic reaction model obtained by DSC studies. Two approaches are developed in order to incorporate the curing kinetics of the underfill into the FEM model using iteration and a loop program. The temperature distribution across the package and across the underfill layer is studied. The effect of the presence of the underfill fillet and the influence of the chip dimension on the temperature difference in the underfill layer is discussed. The influence of the underfill curing kinetics on the modeling results is also evaluated.

Published in:

Electronics Packaging Manufacturing, IEEE Transactions on  (Volume:27 ,  Issue: 1 )