By Topic

Mechanics-based solutions to RF MEMS switch stiction problem

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Mercado, L.L. ; Medtronic, Minneapolis, MN, USA ; Kuo, S.-M. ; Lee, T.-Y.T. ; Lianjun Liu

RF micro-electro-mechanical systems (MEMS) switches are an attractive solution to switch antenna bands and transmit/receive switching for future multiband, high bandwidth cell phones. However, Stiction is a major concern for resistive switches with metal-to-metal contact. An iterative-coupled electrostatic-structural analysis is utilized to evaluate the effect of design parameters on restoring force of MEMS switches. Parameters including metal thickness, dielectric thickness, beam-to-ground gap height, metal and dielectric width, and cantilever beam length can be evaluated. The electrostatic force is first calculated based on the electrical field component. A structural analysis is then performed to determine the cantilever beam deflection due to the electrostatic force. A unique integrated empirical-numerical method is used to quantitatively determine the stiction force based on measured actuation voltages for real devices. The analysis can provide quick evaluation and screenings of proposed designs to determine if their actuation voltage falls in the acceptable range. Simulation prediction agrees very well with test measurements. Although increasing cantilever thickness and shortening cantilever length both increase restoring force, the actuation voltage will increase significantly as a result. The most favorable modification is to increase the electrode area. A short and wide structure with a large area can increase restoring force while maintaining low actuation voltage. Compared to similar bi-layer designs, sandwich designs can be actuated at further reduced voltages without changing the beam restoring force. In addition, the sandwich structure, being thermal-stress-balanced, is less sensitive to temperature excursion. With the properly selected design parameters, the new designs will be able to achieve the break away restoring force of the original design at much lower actuation voltages. Switches with good electrical as well as mechanical performances have been successfully fabricated.

Published in:

Components and Packaging Technologies, IEEE Transactions on  (Volume:27 ,  Issue: 3 )