By Topic

Low cost fuel cell converter system for residential power generation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Jin Wang ; Dept. of Electr. & Comput. Eng., Michigan State Univ., East Lansing, MI, USA ; Peng, F.Z. ; Anderson, J. ; Joseph, A.
more authors

The high installation cost is the major obstacle of the commercialization of the solid oxide fuel cell for distributed power generation. This paper presents a new low cost 10-kW converter system to overcome this obstacle. The proposed system consists of an isolated dc-dc converter to boost the fuel cell voltage to 400 V dc and a pulse-width modulated inverter with filter to convert the dc voltage to two split-phase 120-V ac. The dc-dc converter uses phase shifting to control power flow through a transformer with a metal oxide semiconductor field effect transistor full bridge on the low voltage side and a voltage doubler on the high voltage side. One IPM is used to realize the voltage doubler and the dc-ac inverter. Compared to the existing fuel cell converter systems, the proposed circuit has low cost, less component count, smaller size, and reduced dc-dc converter peak current. Simulation and experimental results are demonstrated.

Published in:

Power Electronics, IEEE Transactions on  (Volume:19 ,  Issue: 5 )