By Topic

Investigation of anti-islanding protection of power converter based distributed generators using frequency domain analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
John, V. ; Northern Power Syst., Waitsfield, VT, USA ; Zhihong Ye ; Kolwalkar, A.

The anti-islanding algorithm proposed by the Sandia national laboratories is analyzed in this study because this scheme, also known as the Sandia scheme, is considered to be effective in detecting islanding of distributed generation systems. Previously, other than heuristic approaches, there has not been any quantitative analysis for tuning the control gains of the algorithm based on the power rating and bandwidth of the distributed generation (DG) power converter. The paper interprets the components of the algorithm that affect the voltage magnitude and frequency into block diagrams that can be linearized and studied using continuous time approximations. This paper uses a frequency domain approach to analyze the range for the gains required by anti-islanding algorithm to effectively determine the disconnection of the mains grid within an acceptable time duration. The analysis provides guidelines for using Sandia's national laboratory schemes under different application conditions. The results are validated using detailed time domain DG and power system simulations.

Published in:

Power Electronics, IEEE Transactions on  (Volume:19 ,  Issue: 5 )