By Topic

A comparison of two design methods for MRI magnets

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Cheng, Y.-C.N. ; Dept. of Radiol., Wayne State Univ., Detroit, MI, USA ; Brown, R.W. ; Thompson, M.R. ; Eagan, T.P.
more authors

Designs of magnetic resonance imaging (MRI) main magnets obtained from both a functional method and a genetic algorithm method have been compared. While most features in the two approaches are similar, there are several important differences. The functional method leads to fewer coil bundles and a reduced total current, i.e., total ampere turns, (e.g., 6-8 MA) that can be as much as 70% of the total current found with the genetic analysis. While the conclusion about stress is that it is a sensitive function of the choice of wire current density, the designs found with the functional method have a larger hoop stress than that of the genetic design, which may require new or refined manufacturing techniques. Furthermore, the functional approach requires much less computing power (i.e., a personal computer is quite sufficient) while the genetic algorithm method in general demands massively parallel computing techniques. However, in order to search for the optimal magnetic resonance design at a given field strength, it is likely that a combination of these two methods will lead to the best results.

Published in:

Applied Superconductivity, IEEE Transactions on  (Volume:14 ,  Issue: 3 )