By Topic

Magnetic-shield-type fault current limiter equivalent circuit

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Fabbri, M. ; Dept. of Electr. Eng., Univ. of Bologna, Italy ; Morandi, A. ; Negrini, F. ; Ribani, P.L.

In order to investigate how a superconducting fault current limiter (SFCL) can enhance the performance of a power system, an accurate circuit model of the device needs to be introduced in power system simulators. In this paper, we present a finite-element numerical model to calculate the time evolution of the voltage across a magnetic-shield-type SFCL, when it is connected to an external circuit. The calculation of the voltage is carried out by using the energy conservation law, and requires the calculation, at any instant, of the current density distribution inside the superconducting tube and magnetization distribution inside the ferromagnetic core of the device. These distributions are determined by means of two coupled equivalent electric and magnetic circuits, whose topology and components are obtained through the spatial integration of quasi-static form of Maxwell equations. Comparisons between numerical and experimental results are shown.

Published in:

Applied Superconductivity, IEEE Transactions on  (Volume:14 ,  Issue: 3 )