By Topic

A Bayesian filtering technique for SAR interferometric phase fields

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
G. Ferraiuolo ; Dipt. di Ingegneria Elettronica e delle Telecomunicazioni, Univ. Federico di Napoli, Italy ; G. Poggi

SAR interferograms are affected by a strong noise component which often prevents correct phase unwrapping and always impairs the phase reconstruction accuracy. To obtain satisfactory performance, most filtering techniques exploit prior information by means of ad hoc, empirical strategies. In this paper, we recast phase filtering as a Bayesian estimation problem in which the image prior is modeled as a suitable Markov random field, and the filtered phase field is the configuration with maximum a posteriori probability. Assuming the image to be residue free and generally smooth, a two-component MRF model is adopted, where the first component penalizes residues, while the second one penalizes discontinuities. Constrained simulated annealing is then used to find the optimal solution. The experimental analysis shows that, by gradually adjusting the MRF parameters, the algorithm filters out most of the high-frequency noise and, in the limit, eliminates all residues, allowing for a trivial phase unwrapping. Given a limited processing time, the algorithm is still able to eliminate most residues, paving the way for the successful use of any subsequent phase unwrapping technique.

Published in:

IEEE Transactions on Image Processing  (Volume:13 ,  Issue: 10 )