By Topic

Markov random field models for directional field and singularity extraction in fingerprint images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Dass, S.C. ; Dept. of Stat. & Probability, Michigan State Univ., East Lansing, MI, USA

A Bayesian formulation is proposed for reliable and robust extraction of the directional field in fingerprint images using a class of spatially smooth priors. The spatial smoothness allows for robust directional field estimation in the presence of moderate noise levels. Parametric template models are suggested as candidate singularity models for singularity detection. The parametric models enable joint extraction of the directional field and the singularities in fingerprint impressions by dynamic updating of feature information. This allows for the detection of singularities that may have previously been missed, as well as better aligning the directional field around detected singularities. A criteria is presented for selecting an optimal block size to reduce the number of spurious singularity detections. The best rates of spurious detection and missed singularities given by the algorithm are 4.9% and 7.1%, respectively, based on the NIST 4 database.

Published in:

Image Processing, IEEE Transactions on  (Volume:13 ,  Issue: 10 )