By Topic

Automatic foveation for video compression using a neurobiological model of visual attention

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Itti, L. ; Psychol. & Neurosci. Graduate Program, Univ. of Southern California, Los Angeles, CA, USA

We evaluate the applicability of a biologically-motivated algorithm to select visually-salient regions of interest in video streams for multiply-foveated video compression. Regions are selected based on a nonlinear integration of low-level visual cues, mimicking processing in primate occipital, and posterior parietal cortex. A dynamic foveation filter then blurs every frame, increasingly with distance from salient locations. Sixty-three variants of the algorithm (varying number and shape of virtual foveas, maximum blur, and saliency competition) are evaluated against an outdoor video scene, using MPEG-1 and constant-quality MPEG-4 (DivX) encoding. Additional compression radios of 1.1 to 8.5 are achieved by foveation. Two variants of the algorithm are validated against eye fixations recorded from four to six human observers on a heterogeneous collection of 50 video clips (over 45 000 frames in total). Significantly higher overlap than expected by chance is found between human and algorithmic foveations. With both variants, foveated clips are, on average, approximately half the size of unfoveated clips, for both MPEG-1 and MPEG-4. These results suggest a general-purpose usefulness of the algorithm in improving compression ratios of unconstrained video.

Published in:

Image Processing, IEEE Transactions on  (Volume:13 ,  Issue: 10 )