Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 5:00 PM ET (12:00 - 21:00 UTC). We apologize for the inconvenience.
By Topic

Independent zone routing: an adaptive hybrid routing framework for ad hoc wireless networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Samar, P. ; Sch. of Electr. & Comput. Eng., Cornell Univ., Ithaca, NY, USA ; Pearlman, M.R. ; Haas, Z.J.

To effectively support communication in such a dynamic networking environment as the ad hoc networks, the routing framework has to be adaptable to the spatial and temporal changes in the characteristics of the network, such as traffic and mobility patterns. Multiscoping, as is provided through the concept of the Zone Routing Protocol (ZRP) for example, can serve as a basis for such an adaptive behavior. The Zone Routing framework implements hybrid routing by every network node proactively maintaining routing information about its local neighborhood called the routing zone, while reactively acquiring routes to destinations beyond the routing zone. In this paper, we propose the Independent Zone Routing (IZR) framework, an enhancement of the Zone Routing framework, which allows adaptive and distributed configuration for the optimal size of each node's routing zone, on the per-node basis. We demonstrate that the performance of IZR is significantly improved by its ability to automatically and dynamically tune the network routing operation, so as to flexibly and robustly support changes in the network characteristics and operational conditions. As a point of reference, through this form of adaptation, we show that the volume of routing control traffic overhead in the network can be reduced by an order of magnitude, under some set of parameter values. Furthermore, the adaptive nature of IZR enhances the scalability of these networks as well.

Published in:

Networking, IEEE/ACM Transactions on  (Volume:12 ,  Issue: 4 )