By Topic

An HMM/MRF-based stochastic framework for robust vehicle tracking

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Jien Kato ; Dept. of Syst. & Social Informatics, Nagoya Univ., Japan ; T. Watanabe ; S. Joga ; Ying Liu
more authors

Shadows of moving objects often obstruct robust visual tracking. In this paper, we present a car tracker based on a hidden Markov model/Markov random field (HMM/MRF)-based segmentation method that is capable of classifying each small region of an image into three different categories: vehicles, shadows of vehicles, and background from a traffic-monitoring movie. The temporal continuity of the different categories for one small region location is modeled as a single HMM along the time axis, independently of the neighboring regions. In order to incorporate spatial-dependent information among neighboring regions into the tracking process, at the state-estimation stage, the output from the HMMs is regarded as an MRF and the maximum a posteriori criterion is employed in conjunction with the MRF for optimization. At each time step, the state estimation for the image is equivalent to the optimal configuration of the MRF generated through a stochastic relaxation process. Experimental results show that, using this method, foreground (vehicles) and nonforeground regions including the shadows of moving vehicles can be discriminated with high accuracy.

Published in:

IEEE Transactions on Intelligent Transportation Systems  (Volume:5 ,  Issue: 3 )