By Topic

Evolutionary design, robustness and of sidewinding locomotion of simulated libmless wheelless robot [libmless read limbless]

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Tanev, I. ; ATR Human Inf. Sci. Labs., Kyoto, Japan ; Ray, T. ; Buller, A.

The objective of this work is automatic design through genetic programming, of the fastest possible locomotion of simulated snake-like robot (Snakebot). The realism of simulation is ensured by employing the Open Dynamics Engine software library. Empirical results demonstrate the emergence of sidewinding as fastest locomotion gait. Robustness of the sidewinding is illustrated by the ease with which Snakebot overcomes various types of obstacles. The ability of Snakebot to adapt to partial damage by gradually improving its velocity characteristics is shown. Discovering compensatory locomotion traits, Snakebot recovers completely from single damage and recovers a major extent of its original velocity when more significant damage is inflicted.

Published in:

Evolutionary Computation, 2004. CEC2004. Congress on  (Volume:2 )

Date of Conference:

19-23 June 2004