By Topic

On the design of state-of-the-art pseudorandom number generators by means of genetic programming

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Hernandez, J.C. ; Campus de Beaulieu, INRIA-IRISA, Rennes, France ; Seznec, A. ; Isasi, P.

The design of pseudorandom number generators by means of evolutionary computation is a classical problem. Today, it has been mostly and better accomplished by means of cellular automata and not many proposals, inside or outside this paradigm could claim to be both robust (passing all the statistical tests, including the most demanding ones) and fast, as is the case of the proposal we present here. Furthermore, for obtaining these generators, we use a radical approach, where our fitness function is not at all based in any measure of randomness, as is frequently the case in the literature, but of nonlinearity. Efficiency is assured by using only very efficient operators (both in hardware and software) and by limiting the number of terminals in the genetic programming implementation.

Published in:

Evolutionary Computation, 2004. CEC2004. Congress on  (Volume:2 )

Date of Conference:

19-23 June 2004