Cart (Loading....) | Create Account
Close category search window
 

Setting up performance surface of an artificial neural network with genetic algorithm optimization: in search of an accurate and profitable prediction of stock trading

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Hayward, S. ; Dept. Finance, Ecole Superieure de Commerce de Dijon, France

This paper considers a design framework of a computational experiment in finance. The examination of relationships between statistics used for economic forecasts evaluation and profitability of investment decisions reveals that only the 'degree of improvement over efficient prediction' shows robust links with profitability. If profits are not observable, this measure is proposed as an evaluation criterion for an economic prediction. Also combined with directional accuracy, it could be used in an estimation technique for economic behavior, as an alternative to conventional least squares. Model discovery and performance surface optimization with genetic algorithm demonstrate profitability improvement with an inconclusive effect on statistical criteria.

Published in:

Evolutionary Computation, 2004. CEC2004. Congress on  (Volume:1 )

Date of Conference:

19-23 June 2004

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.