By Topic

A new technique for dynamic size populations in genetic programming

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Tomassini, M. ; Dept. of Inf. Syst., Laussane Univ., Switzerland ; Vanneschi, L. ; Cuendet, J. ; Fernandez, F.

New techniques for dynamically changing the size of populations during the execution of genetic programming systems are proposed. Two models are presented, allowing to add and suppress individuals on the basis of some particular events occurring during the evolution. These models allow to find solutions of better quality, to save considerable amounts of computational effort and to find optimal solutions more quickly, at least for the set of problems studied here, namely the artificial ant on the Santa Fe trail, the even parity 5 problem and one instance of the symbolic regression problem. Furthermore, these models have a positive effect on the well known problem of bloat and act without introducing additional computational cost.

Published in:

Evolutionary Computation, 2004. CEC2004. Congress on  (Volume:1 )

Date of Conference:

19-23 June 2004