Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 12:00 PM ET (12:00 - 16:00 UTC). We apologize for the inconvenience.
By Topic

Grid density for design of one- and two-dimensional FIR filters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yang, R.H. ; Dept. of Electr. Eng., Nat. Univ. of Singapore, Singapore ; Lim, Y.C.

The frequency response of a digital filter is often optimised to meet a given set of specifications on a dense grid of frequency points. The density of the frequency grid points must be sufficiently high so that the frequency response of the filter does not violate the specifications at frequencies in between the grid points. However, the computational complexity of the design process and the storage requirements of the computer increase with the number of frequency grid points. In this a detail study of the grid density requirement for the design of FIR filters is presented. The study leads to a useful design rule.

Published in:

Electronics Letters  (Volume:27 ,  Issue: 22 )