By Topic

Robust resource allocation for sensor-actuator distributed computing systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
S. Ali ; Dept. of Electr. & Comput. Sci., Missouri-Rolla Univ., Rolla, MO, USA ; A. A. Maciejewski ; H. J. Siegel ; J. -K. Kim

This research investigates two distinct issues related to a resource allocation: its robustness and the failure rate of the heuristic used to determine the allocation. The target system consists of a number of sensors feeding a set of heterogeneous applications continuously executing on a set of heterogeneous machines connected together by high-speed heterogeneous links. There are number of quality of service (QoS) constraints that must be satisfied. A heuristic failure occurs if the heuristic cannot find an allocation that allows the system to meet its QoS constraints. The system is expected to operate in an uncertain environment where the workload, i.e., the load presented by the set of sensors, is likely to change unpredictably, possibly invalidating a resource allocation that was based on the initial workload estimate. The focus of this paper is the design of a static heuristic that: (a) determines a robust resource allocation, i.e., a resource allocation that maximizes the allowable increase in workload until a run-time reallocation of resources is required to avoid a QoS violation, and (b) has a very low failure rate. This study proposes a heuristic that performs well with respect to the failure rates and robustness to unpredictable workload increases. This heuristic is, therefore, very desirable for systems where low failure rates can be a critical requirement and where unpredictable circumstances can lead to unknown increases in the system workload.

Published in:

Parallel Processing, 2004. ICPP 2004. International Conference on

Date of Conference:

15-18 Aug. 2004