By Topic

Ultra-wideband radar sensors for short-range vehicular applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

12 Author(s)

The recent approval granted by the Federal Communications Commission (FCC) for the use of ultra-wideband signals for vehicular radar applications has provided a gateway for the introduction of these sensors in the commercial arena as early as 2004. However, the rules governing the allowable spectral occupancy create significant constraints on the sensors' operation. This is further complicated by the variety of applications that these sensors are being required to fulfill. A review of the motivation for the development of these sensors is followed by a discussion of the consequent implications for waveform design and limitations on system architecture. Other practical considerations such as available semiconductor technology, packaging, and assembly techniques are reviewed, and results are presented for conventional surface-mount plastic packages illustrating their usefulness in the greater than 20-GHz frequency range. Suitable antenna technology for wide-band transmission is presented that is compliant with the specific restrictions stipulated in the FCC ruling. Finally, all of these considerations are combined with the presentation of a compatible integrated-circuit-based transceiver architecture. Measured results are presented for several critical circuit components including a +12-dBm driver amplifier for the transmitter, an RF pulse generator that can produce sub-1-ns pulses at a carrier frequency of 24 GHz, and a single-chip homodyne in-phase/quadrature down-conversion receiver that has a cascaded noise figure of less than 7 dB. All circuit components are fabricated in SiGe.

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:52 ,  Issue: 9 )