Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Reconstruction of predictively encoded signals over noisy channels using a sequence MMSE decoder

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Lahouti, F. ; Dept. of Electr. & Comput. Eng., Univ. of Waterloo, Ont., Canada ; Khandani, A.K.

In this paper, we consider the problem of decoding predictively encoded signal over a noisy channel when there is residual redundancy (captured by a γ-order Markov model) in the sequence of transmitted data. Our objective is to minimize the mean-squared error (MSE) in the reconstruction of the original signal (input to the predictive source coder). The problem is formulated and solved through minimum mean-squared error (MMSE) decoding of a sequence of samples over a memoryless noisy channel. The related previous works include several maximum a posteriori (MAP) and MMSE-based decoders. The MAP-based approaches are suboptimal when the performance criterion is the MSE. On the other hand, the previously known MMSE-based approaches are suboptimal, since they are designed to efficiently reconstruct the data samples received (the prediction residues) rather than the original signal. The proposed scheme is set up by modeling the source-coder-produced symbols and their redundancy with a trellis structure. Methods are presented to optimize the solutions in terms of complexity. Numerical results and comparisons are provided, which demonstrate the effectiveness of the proposed techniques.

Published in:

Communications, IEEE Transactions on  (Volume:52 ,  Issue: 8 )