By Topic

Multiple-antenna channel hardening and its implications for rate feedback and scheduling

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Hochwald, B.M. ; Bell Labs., Murray Hill, NJ, USA ; Marzetta, T.L. ; Tarokh, Vahid

Wireless data traffic is expected to grow over the next few years and the technologies that will provide data services are still being debated. One possibility is to use multiple antennas at base stations and terminals to get very high spectral efficiencies in rich scattering environments. Such multiple-input/multiple-output (MIMO) channels can then be used in conjunction with scheduling and rate-feedback algorithms to further increase channel throughput. This paper provides an analysis of the expected gains due to scheduling and bits needed for rate feedback. Our analysis requires an accurate approximation of the distribution of the MIMO channel mutual information. Because the exact distribution of the mutual information in a Rayleigh-fading environment is difficult to analyze, we prove a central limit theorem for MIMO channels with a large number of antennas. While the growth in average mutual information (capacity) of a MIMO channel with the number of antennas is well understood, it turns out that the variance of the mutual information can grow very slowly or even shrink as the number of antennas grows. We discuss implications of this "channel-hardening" result for data and voice services, scheduling, and rate feedback. We also briefly discuss the implications when shadow fading effects are included.

Published in:

Information Theory, IEEE Transactions on  (Volume:50 ,  Issue: 9 )