By Topic

Sum capacity of Gaussian vector broadcast channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Wei Yu ; Electr. & Comput. Eng. Dept., Univ. of Toronto, Ont., Canada ; Cioffi, J.M.

This paper characterizes the sum capacity of a class of potentially nondegraded Gaussian vector broadcast channels where a single transmitter with multiple transmit terminals sends independent information to multiple receivers. Coordination is allowed among the transmit terminals, but not among the receive terminals. The sum capacity is shown to be a saddle-point of a Gaussian mutual information game, where a signal player chooses a transmit covariance matrix to maximize the mutual information and a fictitious noise player chooses a noise correlation to minimize the mutual information. The sum capacity is achieved using a precoding strategy for Gaussian channels with additive side information noncausally known at the transmitter. The optimal precoding structure is shown to correspond to a decision-feedback equalizer that decomposes the broadcast channel into a series of single-user channels with interference pre-subtracted at the transmitter.

Published in:

Information Theory, IEEE Transactions on  (Volume:50 ,  Issue: 9 )