By Topic

Thermal lensing in diode-pumped ytterbium Lasers-Part I: theoretical analysis and wavefront measurements

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Chenais, Sebastien ; Lab. Charles Fabry de l''Inst. d''Opt., Orsay, France ; Balembois, F. ; Druon, F. ; Lucas-Leclin, G.
more authors

A theoretical and experimental study of thermal lensing in Yb-doped crystals is presented. In this first part, we focus on theoretical considerations and we describe an original technique suitable for thermal lensing measurements in end-pumped materials. We first derive an expression of the temperature distribution with account of absorption saturation and pump beam divergence inside the crystal, and we address a more general discussion on the particularities of quasi-three-level lasers, as far as thermal effects and fracture issues are concerned. The thermal lens was then measured using a simple technique based on a Shack-Hartmann wavefront analyzer, under lasing and nonlasing conditions. We demonstrate that the technique allows precise wavefront measurements even on small spots. Thermal lensing measurements are finally presented in Yb-doped YAG, GGG, YCOB, GdCOB, KGW, and YSO crystals.

Published in:

Quantum Electronics, IEEE Journal of  (Volume:40 ,  Issue: 9 )