By Topic

A 700-kHz bandwidth ΣΔ fractional synthesizer with spurs compensation and linearization techniques for WCDMA applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Temporiti, E. ; STMicroelectronics, Pavia, Italy ; Albasini, G. ; Bietti, I. ; Castello, R.
more authors

A ΣΔ fractional-N frequency synthesizer targeting WCDMA receiver specifications is presented. Through spurs compensation and linearization techniques, the PLL bandwidth is significantly extended with only a slight increase in the integrated phase noise. In a 0.18-μm standard digital CMOS technology a fully integrated prototype with 2.1-GHz output frequency and 35 Hz resolution has an area of 3.4 mm2 PADs included, and it consumes 28 mW. With a 3-dB closed-loop bandwidth of 700 kHz, the settling time is only 7 μs. The integrated phase noise plus spurs is -45 dBc for the first WCDMA channel (1 kHz to 1.94 MHz) and -65 dBc for the second channel (2.5 to 6.34 MHz) with a worst case in-band (unfiltered) fractional spur of -60 dBc. Given the extremely large bandwidth, the synthesizer could be used also for TX direct modulation over a broad band. The choice of such a large bandwidth, however, still limits the spur performance. A slightly smaller bandwidth would fulfill WCDMA requirements. This has been shown in a second prototype, using the same architecture but employing an external loop filter and VCO for greater flexibility and ease of testing.

Published in:

Solid-State Circuits, IEEE Journal of  (Volume:39 ,  Issue: 9 )