By Topic

SP: an advanced surface-potential-based compact MOSFET model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Gildenblat, G. ; Dept. of Electr. Eng., Pennsylvania State Univ., University Park, PA, USA ; Hailing Wang ; Ten-Lon Chen ; Xin Gu
more authors

This work describes an advanced physics-based compact MOSFET model (SP). Both the quasistatic and nonquasi-static versions of SP are surface-potential-based. The model is symmetric, includes the accumulation region, small-geometry effects, and has a consistent current and charge formulation. The surface potential is computed analytically and there are no iterative loops anywhere in the model. Availability of the surface potential in the source-drain overlap regions enables a physics-based formulation of the extrinsic model (e.g., gate tunneling current) and allows for a noise model free of discontinuities or unphysical interpolation schemes. Simulation results are used to illustrate the interplay between the model structure and circuit design.

Published in:

Solid-State Circuits, IEEE Journal of  (Volume:39 ,  Issue: 9 )